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A class of cubic networks composed of a regular one-dimensional lattice and a set of long-range links is
introduced. Networks parametrized by a positive integer k are constructed by starting from a one-dimensional
lattice and iteratively connecting each site of degree 2 with a kth neighboring site of degree 2. Specifying the
way pairs of sites to be connected are selected, various random and regular networks are defined, all of which
have a power-law edge-length distribution of the form P��l�� l−s with the marginal exponent s=1. In all these
networks, lengths of shortest paths grow as a power of the distance and random walk is superdiffusive.
Applying a renormalization group method, the corresponding shortest-path dimensions and random-walk di-
mensions are calculated exactly for k=1 networks and for k=2 regular networks; in other cases, they are
estimated by numerical methods. Although, s=1 holds for all representatives of this class, the above quantities
are found to depend on the details of the structure of networks controlled by k and other parameters.
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I. INTRODUCTION

Random walk in disordered environments is a much stud-
ied problem as it is a basic model in the theory of transport in
heterogeneous media �1,2� and it has features much different
from those characteristic of homogeneous systems. In many
cases, the diffusion law is altered in the way that the typical
displacement of the random walker still grows as a power of
time, i.e., R�t�� t�, however, the diffusion exponent � differs
from the value �=1 /2 characteristic of normal diffusion. In
the case of random walks with quenched random jump rates
on regular lattices or random walks on fractal lattices �e.g.,
percolation clusters� the process is in general subdiffusive,
i.e., ��1 /2 �1,2�. The opposite case, ��1 /2, where the par-
ticle is speeded up compared to normal diffusion, is much
rarer. This phenomenon, called superdiffusion, arises, e.g., in
turbulent fluids �3�, in chaotic transport in laminar fluid flows
�4�, or in systems of polymerlike breakable micelles �5�. In
random-walk models, superdiffusion can be induced by al-
lowing long-range jumps: In the Lévy flight �2�, jumps of
arbitrary length are executed with a probability that decays
as a power of the length; in its “discretized” version, the
Weierstrass walk, the possible jump lengths are integer pow-
ers of an integer a�1 �6�.

Another possibility for superdiffusion in the case of ran-
dom walks on a lattice is when long-range jumps occur only
at certain sites of the lattice. In most cases, the underlying
lattice is a union of a regular and a random graph, where the
latter has arbitrarily long edges. Such graphs have been in-
vestigated in various aspects. As a variant of the small-world
network model constructed by rewiring edges of a regular
network �7�, Newman and Watts have considered a one-
dimensional lattice to which “shortcuts” between randomly
chosen pairs of sites are added �8�. In this model, shortest
paths �8,9� as well as spectral properties of the Laplacian
�10� have been studied. Shortest paths or the diameter of
d-dimensional lattices where long edges exist between pairs

of sites with probabilities that decay algebraically with the
distance have been studied by several authors for d=1
�11–14� and for d�1 �15�. Beside the above models,
n-regular graphs of this type, where the degree of all nodes
�i.e., the number of edges emanating from a node� is n, have
been introduced as well. The issue of decentralized algo-
rithms for finding short paths has been considered by Klein-
berg in a d-dimensional lattice where each site has a fixed
number of directed edges to randomly chosen sites that are
selected with power-law decaying probabilities �16�. Ben-
jamini and Hoffman have studied minimal paths in
�-periodic graphs, which are unions of periodic graphs over
the integers �17�. Recently, Boettcher et al. have introduced a
hierarchical 3-regular network consisting of a one-
dimensional lattice and recursively constructed long-range
links and calculated the random-walk dimension drw�1 /� of
this network �18�.

In this paper, we shall consider networks composed of a
one-dimensional lattice and an additional set of long links.
Particularly, we focus on the intriguing situation when the
tail of the distribution of edge lengths is of the form P��l�
��l−1. In this case, the diameter is conjectured to grow al-
gebraically with the size of the network with a nonuniversal
�-dependent exponent �12,15�. The aim of this work is to
confirm this conjecture by explicit calculations and to probe
whether the diffusion exponent in such networks displays a
similar “marginal” behavior. For this purpose, we define a
class of cubic �i.e., 3-regular� networks with marginal edge-
length distributions �i.e., P��l�� l−1� and shall constructively
demonstrate that the shortest-path dimension that character-
izes the size-dependence of the diameter and the diffusion
exponent are not exclusively determined by the power in the
edge-length distribution but depend on the details of the
structure of networks. The above two intrinsic properties of
networks are calculated exactly in certain cases by means of
a renormalization group method; in other cases, they are es-
timated by the numerical implementation of the renormaliza-
tion procedure and by numerical simulation.

The rest of the paper is organized as follows. In Sec. II, a
class of networks parametrized by a positive integer k is
defined and its general features are discussed. In Sec. III*juhasz@szfki.hu
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networks with k=1, whereas in Sec. IV networks with k
�2, are investigated in detail. Results are discussed in Sec.
V and a heuristic derivation of the relation to resistor net-
works is presented in the Appendix.

II. GENERAL FEATURES

A. Construction of the networks

The networks to be studied in the subsequent sections
have in common that they are all constructed in the follow-
ing way. A one-dimensional open or periodic lattice with N
sites is given, where sites are numbered consecutively from 1
to N. The degree of all sites is thus initially 2 in the periodic
lattice and all but site 1 and N in the open one. Sites of
degree 2 will be called in brief active sites. The links of this
initial regular lattice will be termed short links in the follow-
ings in order to distinguish them from long links generated
by the following procedure. Let us assume that N is even and
k is a fixed positive integer. A pair of active sites is selected
such that the number of active sites between them is k−1 and
this pair is then connected by a �long� link. That means, for
k=1, neighboring active sites are connected, for k=2 next-
to-neighboring ones, etc. This step, which renders two active
sites to sites of degree 3, is then iterated until 2�k−1� active
sites are left. These are then paired in an arbitrary way, which
does not affect the exponents appearing in asymptotic rela-
tions in the limit N→�. In the resulting network, all sites are
of degree 3 if the procedure starts from a periodic lattice
whereas, in the case of an open lattice, site 1 and site N
remain of degree 1. The networks generated in this way �or,
more precisely, the ensembles of networks in the case of
random networks� are characterized by the number k and by
the way pairs are selected.

At some stage of the construction procedure, when the
number of active sites is Na, these sites are distributed ho-
mogeneously on a coarse-grained scale �	1 /c, where c
�Na /N is their number density. In other words, spacings
between neighboring active sites have a rapidly decaying
distribution with the expected value 1 /c. Thus long links of
length larger than l are generated typically when c is smaller
than 1 / l and we obtain for the distribution of lengths in an
infinite network �N→��: P��l�� l−1. Disregarding regular
networks �see Secs. III B 1 and IV B�, where exclusively
long links of length ln�
n �
�1, n=1,2 , . . .� form, the
probability of a long link of length l is thus inversely pro-
portional to the square of the length: pl� l−2. Note, however,
that not all edge lengths are realized in the construction pro-
cedure even for random networks. Namely, for k=1, only
long links of odd length are produced.

B. Studied quantities

We are interested in two intrinsic properties of networks.
Besides the distance l measured on the underlying one-
dimensional lattice, we also consider another metric: The
chemical distance �or the length of the shortest path� � be-
tween two sites is the minimum number of links that have to
be traversed when going from one site to the other. We will
see that, in the networks under study, the average length of

shortest path between sites located in a distance l grows al-
gebraically with l for large distances: ��l�� ldmin, where the
shortest-path dimension dmin�1 is characteristic of the par-
ticular network. This dimension describes at the same time
the finite-size scaling of the diameter D�N� of a network,
which is the maximum of chemical distances between any
pairs of sites: D�N��Ndmin.

The other quantity of interest is the random-walk dimen-
sion of the network �1,19�. We consider a continuous time
random walk on �infinite� networks, where the walker can
jump with unit rate to any of the sites connected with the site
it resides. The random-walk dimension drw is defined through
the relation ��x2�t���typ� t2/drw, where x�t� denotes the dis-
placement of the walker �measured on the underlying one-
dimensional lattice� at time t and ��x2�t���typ�exp ln�x2�t�� is
the “typical value” of �x2�t��. Here, �·� denotes the expected
value for a fixed starting position in a fixed realization of the
ensemble of networks, while the overbar stands for the aver-
age over starting positions and the ensemble of networks.
Note that the expected value �x2�t�� does not exist if t�0
since the expected value of edge lengths is infinite �in infinite
networks�. This accounts for that the average of ln�x2�t�� is
considered instead. The practical reason of the second aver-
aging procedure is to eliminate random modulations which
stem from the randomness of the structure of networks,
whereas for regular networks, this averaging may be ignored.

C. Relation to resistor networks

The calculation of random-walk dimension is based on
the well-known relation between the effective diffusion con-
stant and the effective resistance of the equivalent resistor
network �1,2�. In the equivalent resistor network, each link
has a �dimensionless� resistance ri related to the jump rate wi
along that link via ri=1 /wi. Considering networks built on
an open lattice, the time t needed for the walker to get from
one end of the network �site 1� to the other one �site N� is

t � Nr̃ �1�

for large N, where r̃ is the effective resistance of the equiva-
lent resistor network between the two end points. For the
sake of self-containedness, a heuristic derivation of this re-
lation is given in the Appendix; for a precise formulation of
this connection in an arbitrary network, the reader is referred
to Ref. �20�. Equation �1� implies that the random-walk di-
mension is related to the resistance exponent � defined by the
asymptotical relation r̃�N��N� as

drw = 1 + � . �2�

So, the problem of calculating drw is reduced to the calcula-
tion of the resistance exponent � of the equivalent resistor
network.

III. NETWORKS WITH k=1

The simplest class of networks is obtained when neigh-
boring active sites are connected in the construction proce-
dure, i.e., k=1. In this case, the elementary step of the cal-
culation of the resistance exponent is that a minimal loop
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�pair of sites with a short and a long link between them� is
eliminated as shown in Fig. 1, and the two sites next to the
removed pair are connected by a single link with an effective
resistance r̃.

Applying the reduction rules of resistors in series and in
parallel, we obtain

r̃ = ra + rc +
rb

rb + 1
. �3�

Let us denote the chemical distance between site i and i+1
by �i. Initially, �i=1 for all i and when the elimination step
described above is carried out, the chemical distance trans-
forms in a simple way:

�̃ = �a + �c + 1. �4�

Now, a renormalization group scheme can be defined in
which minimal loops are eliminated one after the other as
described above, exactly in the same order as the long links
of loops were created in the construction procedure. As a
consequence, the construction procedure and the renormal-
ization can be performed simultaneously: once a pair of
neighboring active sites is selected for getting connected it is
immediately eliminated and replaced by an effective short
link with resistance and chemical distance calculated accord-
ing to Eqs. �3� and �4�, respectively. Let us start the
construction-renormalization procedure with an infinite one-
dimensional lattice �N→�� and assume that the length scale
�, which is the inverse of the number density c of active
sites, is large, i.e., �	1. Then the typical resistance and
chemical distance on effective short links scale with the
length as r������ and ������dmin, respectively. For large �,
the effective resistances and chemical distances are also large
and the transformation rules read asymptotically as r̃	ra

+rc and �̃	�a+�c, where the relation f 	g is meant as
lim�→� f /g=1. As the transformation rules of r and � are
asymptotically identical, we conclude that for k=1

� = dmin �k = 1� . �5�

Thus for k=1, both drw and dmin are determined by the resis-
tance exponent �. This exponent also has a further geometri-
cal meaning for k=1. Let us consider a network built on an
open lattice and call a short link the backbone link if its
removal results in that the network becomes disconnected.
Taking into account that shortest paths do not contain turn-
backs �at least in the interior of the path� and they are com-
posed of long links and backbone links alternately, one can
see that the fraction of backbone links in a network of size N
is proportional to Ndmin for large N. In other words, the set of
backbone links is a fractal object characterized by the fractal
dimension dmin.

A. Uniform model

Perhaps the simplest model in the class k=1 is obtained
when pairs of neighboring active sites are selected equiprob-
ably in the course of the construction procedure. We call this
model the �k=1� uniform model.

The resistance exponent of this network can be calculated
as follows. Consider an infinite system �N→�� and assume
that, at some stadium of the renormalization procedure, the
number density of active sites is changed by an infinitesimal
amount dc�0. The differential of the “resistance density”
�� r̄c is then d�=cdr̄+ r̄dc. On the other hand, d�	 r̄dc /2,
where the factor 1 /2 comes from that in an elimination step
two sites are deleted but the total sum of resistances is re-
duced only by r̄ on average. Combining these equations, we
obtain cdr̄	−r̄dc /2, the integration of which results in the
asymptotical relation

r̄ � c−1/2 = �1/2. �6�

Thus in the k=1 uniform model, the dimensions under study
are �=dmin=1 /2 and drw=3 /2. As can be seen, random walk
is superdiffusive in this network.

We mention that the calculation carried out above remains
valid also in the general case when the jump rates are ran-
dom variables provided the expected value of the inverse
jump rates �i.e., resistances� exists. Thus we obtain the same
random-walk dimension for such a disordered model, which
shows that drw is determined solely by the structure of the
network.

B. Closest-neighbor networks

Another possibility to create networks with k=1 is when
pairs are not selected with a uniform probability but always
the pair �or pairs� of actually closest active sites are con-
nected. These networks will be termed closest-neighbor net-
works. Here, distances between adjacent sites are rendered
initially unequal; they are either random or are modulated
according to some aperiodic sequence. Note that a periodic
arrangement of short links of different lengths either would
not produce arbitrarily long links or would result in equal
distances between active sites at some stadium of the con-
struction procedure, after which the procedure would no
longer be unambiguous.

1. Aperiodic networks

First, we consider networks where the short links of dif-
ferent lengths are arranged according to aperiodic sequences.
These aperiodic sequences are composed of letters taken
from a finite alphabet 
a ,b ,c , . . . � and are generated by the
repeated application of an inflation rule, which assigns a
word �i.e., a finite sequence of letters� to each letter. For
instance, the simplest sequence that is suitable for our pur-
poses is the so-called silver-mean sequence. It is
composed of two different letters, a and b, and
is generated by the inflation rule a→wa=aba, b→wb=a.
Starting from letter a, the first few iterations are
a ,aba ,abaaaba ,abaaabaabaabaaaba, etc. To these finite
strings of letters, finite open lattices can be associated in

ra r~rb rca b c d a d

1

FIG. 1. Replacement of a minimal loop by a single link.
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which the two different edge lengths la and lb��la� between
adjacent sites follow the same sequence as the letters in the
strings. In networks constructed in this way, there are multi-
tudes of long links of equal length. These long links will be
termed links of the same generation. In general, the aperiodic
sequences that we need have to meet the following require-
ments. First, in order to avoid ambiguities in the construction
procedure, adjacent short links of shortest length must not
emerge. Second, the infinite system must be self-similar.
That means when a new generation of long links is formed,
the sequence of new distances has to follow the original ape-
riodic sequence. Third, the order of distances must remain
invariant when a new generation of links is formed, i.e., if

la� lb holds, the new distances must satisfy l̃a� l̃b. If these
requirements are fulfilled, a renormalization step in which a
complete generation of minimal loops is eliminated corre-
sponds to a reversed inflation step. After the sporadic inven-
tions of such sequences in the field of aperiodic quantum
spin chains �21�, an infinite class was introduced with the
purpose of studying entanglement entropy in those systems
�22�. In the inflation rule of these sequences, the words are
composed of an odd number of letters and letter b, which
will represent shortest links by convention, stands at even
places. The inflation rule of two-letter sequences with the
above properties can be written in the general form

mn:�a → wa = aba�ba�m−1,

b → wb = a�ba�n−1,
 �7�

where n and m are integers fulfilling 1�n�m. The special
case m=n=1 corresponds to the silver-mean sequence men-
tioned above while, with the choice m=n=2, the well-known
Fibonacci sequence is generated. An example of three-letter
sequences is the tripling sequence, generated by

t:�a → wa = aba ,

b → wb = cbc ,

c → wc = abc .
� �8�

Here, edge lengths are ordered as lb� lc� la. The structure of
a few aperiodic closest-neighbor networks is illustrated in
Fig. 2.

We shall show that the shortest-path dimension can be
calculated exactly from the substitution matrix S of the un-
derlying sequence. The elements S�� of this matrix are given
by S��=n��w��, where n��w�� is the number of occurrences
of letter � in the word w�. Considering a string of letters si
and a column vector v�si� with the components �v�si���

=n��si�, it is easy to see that the application of the inflation
transformation results in a longer string si+1 with the vector
v�si+1�=Sv�si�. Thus the asymptotic ratio of lengths of suc-
cessive strings obtained in the inflation procedure is given by
the largest eigenvalue 
+ of S. Besides, we need the asymp-
totical scaling of chemical distances between neighboring
active sites when a new generation of links forms. The

chemical distance �̃� on an effective short link represented
by letter � after a new generation of long links has formed is
related to the previous chemical distances �� ���b� as

�̃� = �
��b

n��w���� + nb�w�� . �9�

If the density of active sites is small, the chemical distances
are also large and the last term on the right-hand side �rhs� of
Eq. �9� is negligible. We have thus the asymptotical relation

�̃�	���bn��w����. This yields that the chemical distances

grow in a renormalization step asymptotically by a factor 
̄+,

i.e., �̃� /��	 
̄+, ��b, where 
̄+ is the largest eigenvalue of

the matrix S̄ obtained from S by deleting the row and column
related to letter b. As the length scale � grows by the factor

+ in a renormalization step, we obtain finally that the

shortest-path dimension is given by dmin=
ln 
̄+

ln 
+
and the

random-walk dimension is

drw = 1 +
ln 
̄+

ln 
+
. �10�

For the family of networks constructed by using
two-letter sequences, we have 
+�m ,n�= 1

2 �m+n

+��m+n�2+4�m−n+1�� and 
̄+�m ,n�=m+1. For example,
for the silver-mean network we obtain drw=1+ ln 2

ln�1+�2� , for
the Fibonacci network drw=1+ ln 3

3 ln � with the golden ratio �

= 1+�5
2 . In the tripling network constructed by using the rule

in Eq. �8�, the set of backbone links is closely related to the
Cantor set and accordingly, the random-walk dimension is
drw=1+ ln 2

ln 3 . Numerical values of drw are shown in Table I for
a few two-letter networks.

It follows from Eq. �10� that 1�drw�2 for the aperiodic
networks introduced in this section. This means that random
walk is superdiffusive in these networks just as in the uni-
form model. Next, we discuss the bounds of drw in this class
of networks. As can be seen from the data in Table I, for the
two-letter networks with n=m, the random-walk dimension
increases monotonously with m �i.e., with the length of
words� after the minimum at m=2 and one can see from Eq.

a b a a a b a a b a a b a a a b a

a b a b a a b a a b a b a

a b a c b c a b a a b c c b c a b c a b a c b c a b a

FIG. 2. Fragments of the silver-mean, the Fibonacci, and the
tripling network �from top to bottom�.

TABLE I. Random-walk dimension of networks constructed on
the basis of the two-letter inflation rule in Eq. �7�.

m=n=1 �silver mean� 1.7864…
m=n=2 �Fibonacci� 1.7610…
m=n=3 1.7623…
m=n=4 1.7683…
m=n=5 1.7748…
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�10� that it tends to 2 in the limit m=n→�. This tendency is
intuitively easy to understand: A fragment of these networks
which corresponds to a single word has periodically arranged
short links, where the links of shortest length lb are located at
even places. Therefore the long links generated in the interior
of such a fragment are of limited length �lb� and, as a con-
sequence, diffusion in such fragments is normal. Thus the
upper bound of drw in this family of networks is drw=2 and
this value, which is characteristic of normal diffusion, can be
approached arbitrarily closely by choosing sufficiently long
words in the inflation rule. Concerning the lower bound of
drw, presumably there does not exist representatives of the
family of k=1 aperiodic networks which approach the ballis-
tic limit drw=1 arbitrarily closely. In fact, the smallest value
of drw that we found is drw=1+ ln 2

ln 3 �1.6309, which is real-
ized in the tripling network. The geometry of this network is
known to be extremal also with respect to the von Neumann
entropy of aperiodic quantum spin chains �22�. In Sec. IV,
we shall see that larger k may result in smaller random-walk
dimensions.

2. Random closest-neighbor network and related networks

Another example for closest-neighbor networks is the one
generated with random initial lengths. In the case when the
initial distribution of lengths is discrete and there may be
adjacent short links of shortest length present with finite
probability, the construction procedure is extended with the
additional rule that a pair is randomly selected from those
with shortest distance with uniform probability.

The renormalization group scheme of this network with

the asymptotical rule �̃	�a+�c is formally identical to that
arising in the context of a model of coarsening introduced in
Ref. �23�. For that recursion scheme, it has been shown that
the exponent z that appears in the relation ������z between
the variable � and the length scale � is the zero of a transcen-
dental equation and it has been found that z
=0.824 924 12. . .. Thus for the random closest-neighbor net-
work, we have dmin=z and drw=1+z.

Next, we discuss a variant of the random-closest-neighbor
network, the renormalization of which is identical to that of
certain quantum spin chains �24� and due to this equivalence,
the random-walk dimension can be exactly determined
again. Let us consider a one-dimensional lattice of size N
with three variables at each short link: the length ln, the
chemical distance �n, both are initially equal to 1, and an
independent, identically distributed random variable �n that
we call � distance. Now, a cubic network is generated as
follows. The pair of active sites with the shortest � distance,
say �b, is chosen and the two sites are connected by a long
link. The length and the chemical distance on the new effec-
tive short link produced in the equivalent renormalization
step are calculated ordinarily but the � distance has an
anomalous transformation rule:

�̃ = �a + �c − �b, �11�

where the indices refer to links as given in Fig. 1. As the
structure of the network constructed in this way is identical
to that of singlet bonds in the so-called random-singlet phase

of antiferromagnetic quantum spin chains, we call this net-
work the random-singlet network. In Ref. �24�, it was shown
in the limit N→� that, when the density c of active sites
goes to zero, the typical value of the variable � scales with
the length �=1 /c asymptotically as �������/2, where �

= 1+�5
2 is the golden ratio. The shortest-path dimension of the

random-singlet network is thus dmin= 1+�5
4 �0.8090, and the

random-walk dimension is drw= 5+�5
4 .

Finally, we examine another variant of the random-
closest-neighbor network: This is constructed by connecting
pairs of active sites with the actually shortest chemical dis-
tance. This means physically that when searching the closest
neighbor of an active site, the already existing long links are
also made use of. When generating this network, which we
call random minimal-chemical-distance network, the initial
chemical distances are made random; in the numerical cal-
culations, we used the initial values �n=1+�n, where �n�1
is a small random variable. One can easily see that the vari-
ables ln and �n become positively correlated in the renormal-
ization process of this network, i.e., for small values of ln the
variable �n is also typically small. On the grounds of this
observation, we expect that the shortest-path dimension of
the random minimal-chemical-distance network is close to
that of the random-closest-neighbor network. According to
results of numerical calculations, this is indeed the case. We
have calculated the effective resistance between end points
of networks generated from open lattices of size N=2n, n
=4, . . . ,14. Data obtained in this way in 106–107 indepen-
dently generated networks were averaged for each N. Results
are shown in Fig. 3. The method was tested on the uniform
model, on the random-closest-neighbor network, and on the
random-singlet network, for which we obtained �=0.500�1�,
�=0.825�1�, and �=0.809�1�, respectively. The resistance
exponent of the random minimal-chemical-distance network
obtained in this way is �=0.826�1�, which is very close to
that of the random-closest-neighbor network.

IV. NETWORKS WITH k�1

In this section, we will discuss networks with k�1, which
differ from the class of networks with k=1 studied so far in

0.5

0.6

0.7

0.8

4 6 8

ζ(
N

)

ln(N)

2

8

4 8

ln
[r

(N
)]

ln(N)

||

FIG. 3. Effective resistance exponent ��N�
� ln�r�2N� /r�N�� / ln 2 plotted against the system size for the k=1
uniform ���, the random-closest-neighbor ���, the random-singlet
���, and the random minimal-chemical-distance network ���. Hori-
zontal lines indicate the extrapolated values in the limit N→�.
Inset: Dependence of the average resistance on the size N.
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that the resistance exponent and the shortest-path dimension
are no longer equal. We will focus mainly on the case k=2,
where a renormalization group scheme similar to that applied
for k=1 can be formulated. Herein, the minimal loops, which
are triangles for k=2, are eliminated one after the other as
shown in Fig. 4.

The result of such a renormalization step is that sites b
and d together with the long link connecting them vanish.
The new effective resistances can be calculated by employ-
ing the star-triangle transformation of resistor networks. This
yields

r̃a = ra +
rbrf

rb + rc + rf
,

r̃c = rd +
rcrf

rb + rc + rf
,

r̃g = rg +
rbrc

rb + rc + rf
. �12�

The new feature here compared to the renormalization of k
=1 networks is that resistances of long links are also trans-
formed.

Note that a similar substitution by which the long links of
minimal loops are removed without changing the topology of
the rest of the network cannot be formulated for k�2.

A. Uniform model

First, the case is considered when pairs of active sites are
selected randomly with uniform probability in the construc-
tion procedure. For k=2, when a triangle is eliminated in the
renormalization procedure, the change in the total sum of
resistances �including those on long links� � can be written
in the form

� = − rb − rc +
rbrc − rf

2

rb + rc + rf
. �13�

As can be seen, the average value of � cannot be expressed
by the average values of resistances rb, rc, and rf, therefore
the evolution of the entire distribution of the latter quantities
should be taken into consideration. Another difficulty is that
the renormalization rules in Eq. �12� apparently induce cor-
relations between the quantities r̃a, r̃c, and r̃g. Therefore we

resorted here to numerical methods again in order to estimate
drw and dmin. According to results of numerical renormaliza-
tion, the absolute value of the average of the last term on the
rhs of Eq. �13� is growing proportionally to the average of
effective resistances in the course of the procedure. Al-
though, it is thus not negligible compared to the average of
the first two terms on the rhs of Eq. �13�, it is by an order of
magnitude smaller than those two terms. If the last term on
the rhs of Eq. �13� is omitted, the resulting simple renormal-
ization process that is analytically tractable may provide a
first approximation for the resistance exponent. Using that
the average resistance of short links is equal to that of long
links, which follows after all from the symmetry of the trans-
formation rules in Eq. �12�, we can write for the differential
of the resistance density in this simplified process d�
=2r̄dc /3, which leads finally to r̄�����1/3.

We have carried out the renormalization procedure nu-
merically until two active sites were left in networks gener-
ated from periodic chains of size N=2n, n=4, . . . ,15. The
average resistance of the remaining two effective short links
was calculated from data obtained in 107−6�106 indepen-
dent networks for each system size N. The resistance expo-
nent extracted from the finite-size scaling of the average re-
sistance is �=0.311�1�, see Fig. 5.

We have also performed numerical simulations of the ran-
dom walk in k=1,2 ,3 uniform networks of size N=106 and
measured the displacement x�t� of the walker at time t=2n,
n=4, . . . ,15. As we measured x�t� in a given network N
times using all the N sites of the network as starting positions
of the walker, the averaging over different stochastic histo-
ries for a given starting position was ignored and the quantity
ln�x�t�� was calculated. In addition to the averaging over
starting positions, data obtained in 500 independent networks
were averaged. Results are shown in Fig. 6. The estimated
random-walk dimensions are drw�k=1�=1.49�1�, drw�k=2�
=1.31�1�, and drw�k=3�=1.19�1�. As can be seen, these val-
ues are less accurate compared to the resistance exponent
calculated by numerical renormalization. Nevertheless,
drw�k=1� measured in this way is compatible with the exact
value 3 /2 and drw�k=2� is compatible with � calculated nu-
merically for k=2.

Besides the random-walk dimension, we have measured
the shortest-path dimension for k=1,2 ,3 as well. The length

rf

ra rb rc rd

ra
~

rg

rc
~

rg
~

e

b d ec

a c

a

FIG. 4. Renormalization scheme for networks with k=2.
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FIG. 5. Average resistance of the k=2 uniform model plotted
against the system size. Inset: Effective resistance exponent ��N�
� ln�r�2N� /r�N�� / ln 2 plotted against the system size. The horizon-
tal line indicates the extrapolated value in the limit N→�.
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of shortest path between sites in a distance N /2 was deter-
mined by a simple breadth-first search algorithm. This was
performed in 5�105−5�103 independently generated net-
works for each size N=2n, n=4, . . . ,17, and for N /8 pairs of
sites in each network. The average chemical distance ��N�,
plotted against N in Fig. 7, was found to grow for large N as
��N��Ndmin+C with a constant term C�−2, that shifts the
effective dmin�N� considerably for moderate N. Using this
ansatz, the estimated shortest-path dimensions are dmin�k
=1�=0.500�1�, dmin�k=2�=0.440�1�, and dmin�k=3�
=0.381�1�.

B. Regular networks

In addition to the random networks studied in the previ-
ous section, one can define regular networks with k�1 as
well. The cubic, hierarchical network studied in Ref. �18� is
an example of a regular network with k=2. In this section,
we shall consider regular k=2 networks which are defined by
means of aperiodic sequences. Here, the random-walk di-
mension and the shortest-path dimension can be calculated
exactly.

Let us consider the subclass of aperiodic sequences dis-
cussed in Sec. III B 1, where the length of words is either

one or three. One can define networks by using inflation
rules with longer words, as well, but we shall focus on this
simple subclass. Once a sequence of this class is given, a
finite network with odd sites can be defined as follows. A
finite string of letters which is generated from a single letter
is taken and this time, not the links but the sites of a one-
dimensional lattice are labeled with the letters of the string.
The sites are grouped into blocks corresponding to words w�

in the inflation rule, which can be done unambiguously.
Then, sites belonging to one-letter blocks are renamed ac-
cording to the reversed inflation rule w�→�, where w� is the
one-letter word corresponding to the block. In blocks com-
posed of three sites, the two lateral sites are connected, and
the middle one is renamed again according to the reversed
inflation rule w�→�, where w� is the word corresponding to
the block. The above step is then iterated until only one
active site is left. In finite networks this site is of degree 2.

We have not found a general way of calculating drw and
dmin in these networks so they have to be treated individually.
Two examples will be discussed.

1. k=2 tripling network

First, we examine the k=2 tripling network which is con-
structed by means of the tripling sequence with the inflation
rule in Eq. �8�. This network is shown in Fig. 8.

Let us generate a sequence of finite strings by applying
the inflation rule n times on letter a and consider the corre-
sponding sequence of finite networks built on open lattices
the sites of which are labeled by these strings. The size of the
nth such network is Nn=3n. By constructing the first few
such networks and observing their self-similar structure, one
can easily check that, for the length of the shortest path be-
tween the two end points, the recursive relation �n=2�n−1
+1 holds. Thus for large n, �n�2n. Expressing n with Nn
yields ��Nln 2/ln 3. The shortest-path dimension of this net-
work is thus dmin= ln 2

ln 3 �0.6309.
The resistance exponent of this network can be calculated

by a renormalization procedure in which the generation of
long links belonging to minimal loops is iteratively elimi-
nated according to the scheme shown in Fig. 4. Let us con-
sider the infinite network �N→��, with resistance r on short
links and resistance p on long links. When the generation of
long links belonging to minimal loops is eliminated, we ob-
tain a similar network but with modified parameters r̃ and p̃.
Using Eq. �12�, we obtain for the renormalized parameters:

r̃ = r +
2rp

2r + p
, p̃ = p +

2r2

2r + p
. �14�

These equations yield for the scaling factor of resistances 
̄
� r̃ /r= p̃ / p=5 /3. Keeping in mind that the scaling factor of
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FIG. 6. Time dependence of the average logarithmic displace-
ment ln�x�t�� of the random walker measured in numerical simula-
tions in the uniform model with different values of k. Inset: Effec-
tive random-walk dimension drw�t� calculated from neighboring
pairs of data points as 1 /drw�t�= �ln�x�2t��−ln�x�t��� / ln 2. Horizontal
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FIG. 8. A finite k=2 tripling network �top� and a finite k=2
silver-mean network �bottom�.
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the length is 
=3, we obtain for the resistance exponent

�= ln 
̄
ln 
 = ln 5/3

ln 3 and for the random-walk dimension
drw=1+�= ln 5

ln 3 �1.4650.

2. k=2 silver-mean network

Next, we discuss the k=2 silver-mean network con-
structed by using the inflation rule in Eq. �7� with m=n=1
�see Fig. 8�. Observing the self-similar structure of finite rep-
resentatives of this network, one can formulate the following
recursion equation for the lengths of shortest paths between
end points in finite networks constructed by consecutive
strings of letters: �k=3�k−2+2. The asymptotic scaling factor
of the chemical distance is thus �3. As the asymptotic scaling
factor of the size of the network is 1+�2 �see Sec. III B 1�,
the shortest-path dimension is dmin= ln �3

ln�1+�2� �0.6232.
The calculation of � for the silver-mean network is some-

what more involved than for the tripling network. In order to
find blocks which transform in a self-similar way under a
renormalization step, an additional site of degree 2 is in-
serted in the middle of each short link. The number of short
links �and sites� is thus doubled but if we assign a resistance
1 /2 to short links instead of 1 in this extended network, the
effective resistance is obviously equal to that of the original
network. Furthermore, instead of keeping track of resistances
of long links, we divide the resistance of a long link equally
among the two sites that it connects. This means formally
that there is an additional variable pi at all sites of the origi-
nal network �initially 1 /2�, which changes in the course of
the renormalization procedure, just as the resistances of short
links. After eliminating the first generation of long links, the
effective resistances of short links emanating from sites of
type a will be different from those of short links emanating
from sites of type b. These resistances will be denoted by ra
and rb, respectively. The additional variables will also be
different at the two types of sites. These will be denoted by
pa and pb. This structure of the parameters remains, however,
invariant when the subsequent generations of long links are
eliminated. The substitution of the two different types of
building blocks of the silver-mean network is illustrated in
Fig. 9.

When in an arbitrary stadium of the renormalization pro-
cedure the parameters are ra, rb, pa, and pb then, after the
next generation of long links is eliminated, the renormalized
parameters can be expressed in terms of the original ones as

r̃a = ra +
pa�ra + rb�
pa + ra + rb

, r̃b = ra,

p̃a = pb +
�ra + rb�2

2�pa + ra + rb�
, p̃b = pa. �15�

After a lengthy but elementary calculation one obtains that

the ansatz r̃a /ra= r̃b /rb= p̃a / pa= p̃b / pb� 
̄ solves the above

system of equations with the scaling factor 
̄= 1
1+�2

+ �2�2�1/2. The resistance exponent is thus �= ln 
̄
ln 
 =ln� 1

1+�2
+ �2�2�1/2� / ln�1+�2� and the random-walk dimension of the
k=2 silver-mean network is drw=1+�=ln�1+ �4
+2�2�1/2� / ln�1+�2��1.4575.

V. DISCUSSION

We have seen that, in the networks studied in this work,
the distribution of edge lengths is broad and, as a conse-
quence, the length of shortest paths grows sublinearly with
the distance and the random walk becomes superdiffusive. A
model similar to random networks of this class �although not
n regular� is the model by Benjamini and Berger, where any
pairs of sites in a distance l are connected with probability
pl��l−s−1 for large l. In that model, the diameter D, which is
measured in terms of chemical distances, was conjectured to
grow with the system size as D�N��Ndmin��� with some
�-dependent exponent 0�dmin����1 in the marginal case
s=1 �12�. Later, a power-law lower bound for ��1 and a
power-law upper bound for any � were shown to exist as-
ymptotically with high probability for the size dependence of
the diameter �15�. Thus, as far as the length of shortest paths
�or the diameter� is concerned, random networks studied in
this paper behave as that model is conjectured to do. Further-
more, we have shown that besides dmin, the random-walk
dimension is also influenced by the details of the structure of
networks in the marginal point s=1 �25�.

By means of the class of networks introduced in this
work, a different type of control of the diffusion exponent
can be realized compared to previous models. The control
parameter is not the index s as in the Lévy flight, which is set
to its marginal value s=1 here, nor the prefactor � as in the
marginal Benjamini-Berger model but the number k and
other possible parameters appearing in the construction pro-
cedure. The prefactor � in the distribution of lengths, as well
as the shortest-path dimension and the random-walk dimen-
sion of these networks are nontrivial functions of these pa-
rameters.

We have also shown that by a sequence of k=1 aperiodic
networks, the normal diffusion limit �drw=2� can be ap-
proached arbitrarily closely. According to numerical results
for k=1,2 ,3 uniform networks, the random-walk dimension
decreases with the parameter k and if k→�, the latter quan-
tity tends presumably to the ballistic limit drw=1.

As opposed to the diffusion exponent that varies continu-
ously with the index s in case of the Lévy flight, the set of
possible values of drw which can be realized by these net-
works is discrete. Nevertheless, one can define uniform net-
works where the parameter k is not fixed but more than one
value of k is used in the construction procedure, e.g., k
� 
n ,n+1� with a fixed positive integer n. The random-walk
dimension of such “mixed” networks is expected to interpo-
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FIG. 9. Renormalization scheme for the k=2 silver-mean net-
work. Sites of the original network are symbolized by black circles
while the additional sites by gray circles.
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late between that of “pure” ones constructed with a single k.
In a subclass of networks introduced in this paper, the

dimensions dmin and drw have been calculated exactly; in
some cases they have been estimated by numerical methods.
The possible exact calculation of these dimensions for other
networks of this class or finding rigorous bounds on these
quantities is the task of future research.

APPENDIX

Let us consider a network built on an open one-
dimensional lattice of size N. Connect the sites at the ends of
the lattice �site 1 and N� with a directed link which the
walker can traverse only in one direction, say from site 1 to
site N with a unit rate. Let us denote the probability that the
random walker can be found at site i in the steady state by
�i. These probabilities satisfy the set of linear equations

�
j

wij��i − � j� = 0, 1 � i � N , �A1�

where the summation goes over the set of sites connected
with site i and wij denotes the jump rate from site i to site j;
in our case wN1=0 and wij =1 for other pairs �i , j� of con-
nected sites. Now, one can notice that Eq. �A1� is analogous
to Kirchhoff’s first law for electric circuits. Namely, �i plays

the role of the potential at site i and 1 /wij corresponds to the
resistance of link �i , j�. Consequently, if the part of the net-
work between site 1 and N �except of the directed link� is
replaced with a single �symmetric� link with a jump rate 1 / r̃,
where r̃ is the effective resistance of the equivalent resistor
network, the steady-state current J through the directed link
remains unchanged. On the other hand, we may write for J in
this simplified “circuit,” which consists of site 1 and site N,
as well as the directed link and the effective symmetric link
connecting them,

J = �1 = ��N − �1�r̃−1. �A2�

If N	1, the effective resistance is also large and we have
J=�1��Nr̃−1. If all the links were symmetric, the walker
would be distributed uniformly on the network in the steady
state. Although the link between site 1 and site N is directed
and this leads to that the network is depleted on the side
containing site 1, the steady-state probabilities far from the
end 1 such as �N are still proportional to 1 /N for large N.
The expected value of the time t that the walker needs to
make a complete tour on the network �from site N to the
same site through the directed link� is related to the current
as t=1 /J. Thus it scales with the size of the network as t
��N

−1r̃�N1+� in the large N limit, from which we arrive at
Eq. �2�.
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